“问题:一个猎人和一只隐形的兔子在欧氏平面上玩一个游戏。
已知兔子的起始位置A0和猎人的起始位置B0重合。在游戏进行n-1回合之后,兔子位于点An-1,而猎人位于点Bn-1,在第n个回合中,以下三件事情依次发生……
(1)兔子以隐形的方式移动到一点An,使得点An-1和点An之间的距离恰为1。
(2)一个定位设备向猎人反馈一个点Pn,这个设备唯一能够向猎人保证的事情是,点Pn和点An之间的距离至多为1。
(3)猎人以可见的方式移动到一点Bn,使得点Bn-1和点Bn之间的距离恰为1。
试问:是否无论兔子如何移动,也无论定位设备反馈了哪些点,猎人总能够适当地选择她的移动方式,使得在10^9回合之后,她能够确保和兔子之间的距离至多是100?”
“……”
这就是三轮最后一道压轴题。
也是很有意思的一道题。
当然!
只是有意思罢了。
至于难度……
对于江南来说,根本无难度可言。
简直是soeasy好吧!
“这题很简单不是么?”
“只要你对常识思维,等效思维和极端思维有一定了解,便很容易得到……”
“1:允许这只隐身兔加持膜法,可以操纵探测仪。”
“2:受1的影响,猎人可能在某些情况下出现判断上的偏差。”
“这里的等效表述,允许制造一些不利于猎人的可能情况,看看猎人和隐形兔如何应对。”
Loading...
未加载完,尝试【刷新】or【关闭小说模式】or【关闭广告屏蔽】。
尝试更换【Firefox浏览器】or【Chrome谷歌浏览器】打开多多收藏!
移动流量偶尔打不开,可以切换电信、联通、Wifi。
收藏网址:www.dingdian007.com
(>人<;)